学习编程,主要掌握Python,跟着课程也学习了一些C、HTML、CSS、JavaScript;学习了数据科学的理论和编程方法,如:Pandas, Numpy, Matplotlib等;在线学习了四套关于Machine Learning和Deep Learning的课程。
阶段一是Python语言(用时5周,包括基础语法、面向对象、高级课程、经典课程);阶段二是Linux初级(用时1周,包括Linux系统基本指令、常用服务安装);阶段三是Web开发之Diango(5周+2周前端+3周diango);阶段四是Web开发之Flask(用时2周);
阶段五是Web框架之Tornado(用时1周);阶段六是docker容器及服务发现(用时2周);阶段七是爬虫(用时2周);阶段八是数据挖掘和人工智能(用时3周)。
新手可以从基础的基础开始学起,不止线性规划和随机森林,连笔记本怎么用,NumPy等重要的Python库怎么用,都有手把手教程。
到中后期,可以学着搭高级的RNN,厉害的GAN,这里还有许多实际应用示例可以跑。毕竟,这是一个注重实践的项目。
这里的算法示例,可以用Google Colab来跑,免费借用云端TPU/GPU,只要有个Chrome就够了。没梯子的话,就用Jupyter Notebook来跑咯。
基础部分,除了有Python指南、笔记本用法,以及Numpy、Pandas这些库的用法,还有线性规划、逻辑规划、随机森林、k-means聚类这些机器学习的基本技术。
深度学习入门,包括了PyTorch指南、多层感知器 (MLP) 、数据与模型、面向对象的机器学习、卷积神经网络 (CNN) 、嵌入,以及递归神经网络 (RNN) 。
深度学习高阶,会涉及更高级的RNN、自编码器、生成对抗网络 (GAN) ,以及空间变换网络 (Spatial Transformer Networks) 等等。
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:xinmeigg88@163.com
本文链接:http://www.glev.cn/tnews/7187.html